Bayesian Networks for Clinical Decision Support in Lung Cancer Care
نویسندگان
چکیده
Survival prediction and treatment selection in lung cancer care are characterised by high levels of uncertainty. Bayesian Networks (BNs), which naturally reason with uncertain domain knowledge, can be applied to aid lung cancer experts by providing personalised survival estimates and treatment selection recommendations. Based on the English Lung Cancer Database (LUCADA), we evaluate the feasibility of BNs for these two tasks, while comparing the performances of various causal discovery approaches to uncover the most feasible network structure from expert knowledge and data. We show first that the BN structure elicited from clinicians achieves a disappointing area under the ROC curve of 0.75 (± 0.03), whereas a structure learned by the CAMML hybrid causal discovery algorithm, which adheres with the temporal restrictions, achieves 0.81 (± 0.03). Second, our causal intervention results reveal that BN treatment recommendations, based on prescribing the treatment plan that maximises survival, can only predict the recorded treatment plan 29% of the time. However, this percentage rises to 76% when partial matches are included.
منابع مشابه
The Effect of Time-dependent Prognostic Factors on Survival of Non-Small Cell Lung Cancer using Bayesian Extended Cox Model
Abstract Background: Lung cancer is one of the most common cancers around the world. The aim of this study was to use Extended Cox Model (ECM) with Bayesian approach to survey the behavior of potential time-varying prognostic factors of Non-small cell lung cancer. Materials and Methods: Survival status of all 190 patients diagnosed with Non-Small Cell lung cancer referring to hospitals in ...
متن کاملA Bayesian model decision support system: dryland salinity management application
Addressing environmental management problems at catchment scales requires an integrated modelling approach, in which key bio-physical and socio-economic drivers, processes and impacts are all considered. Development of Decision Support Systems (DSSs) for environmental management is rapidly progressing. This paper describes the integration of physical, ecological, and socio-economic components i...
متن کاملLung Cancer Assistant: a hybrid clinical decision support application for lung cancer care
Multidisciplinary team (MDT) meetings are becoming the model of care for cancer patients worldwide. While MDTs have improved the quality of cancer care, the meetings impose substantial time pressure on the members, who generally attend several such MDTs. We describe Lung Cancer Assistant (LCA), a clinical decision support (CDS) prototype designed to assist the experts in the treatment selection...
متن کاملIntegrating Case-based and Bayesian Reasoning for Decision Support
In this thesis, we present an approach to integration of case-based reasoning and Bayesian reasoning for decision support. Our design is meant to provide physicians with decision support in the context of palliative care for lung cancer patients. Because of delays in the medical data, we created an intermediate application with the aim to assist people in choosing an adequate wine for a given m...
متن کاملClinical decision support system, a potential solution for diagnostic accuracy improvement in oral squamous cell carcinoma: A systematic review
BACKGROUND AND AIM: Oral squamous cell carcinoma (OSCC) is a rapidly progressive disease and despite the progress in the treatment of cancer, remains a life-threatening illness with a poor prognosis. Diagnostic techniques of the oral cavity are not painful, non-invasive, simple and inexpensive methods. Clinical decision support systems (CDSSs) are the most important diagnostic technologies used...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013